Back to top

Suction Buckets: Large-Scale Test Reveals Increased Tensile Capacity During Storms

Graphical representation of a bucket foundation (Courtesy of Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.)

Fraunhofer IWES tested two large-scale suction buckets in a 1:5 scale in early 2018. The physical experiments at the Test Center for Support Structures in Hanover (TTH) are the first of their kind in Germany. The test results confirmed the enormous potential of this foundation concept for reliable and cost-effective deployment in offshore wind farms. Within the experimental work the IWES researchers were also able to quantify an effective temporary increase in tensile capacity during storms. For manufacturers, this means the possibility of material savings for the entire construction without compromising stability.

The so-called “suction buckets” have been used successfully in the oil and gas industry. The offshore wind energy sector will see this year the first commercial wind farm with substructures comprising multiple buckets. Numerous questions regarding the dimensioning and the operational behavior of the bucket-foundations still remain open. For this reason, Fraunhofer IWES investigates the potential for optimization for offshore wind energy in a research demonstration project.

Object of the study is the behavior of the bucket foundations during the suction-assisted installation and its axial behavior when subjected to extreme wave loads. The large-scale experimental investigations are carried out at the TTH, an installation of the Leibniz University Hannover. As jacket substructures for offshore turbines have to stand harsh weather conditions, the focus was on tensile load tests replicating the effect of extreme waves on the structure. This allowed the IWES researchers to confirm that the pull-out capacity of suction buckets increases temporarily during extreme weather conditions. This is caused by the negative pressure generated inside the bucket when the foundation is struck by particularly extreme waves. This increases the load-bearing capacity of the foundations significantly.

“We were able to observe that the tensile capacity of the foundation increases temporarily by a percentage in the two-digit range during a typical storm,” said IWES project manager Tulio Quiroz. “The increase can be even higher in the case of extreme storm events.”

Today’s offshore foundations are designed very conservatively. One of the reasons for that is the still not well-known foundation behavior when subjected to cyclic loading. The realistic assessment of the foundation response can result in considerable material and logistic savings without compromising the structure stability. The IWES researchers are now one step closer to this quantification. This increases the cost-efficiency of this innovative application, which already offers a whole range of advantages for the environment and wind farm operators. These include for example the installation of the substructure and the foundations in one step, low noise installation and the possibility of complete one-step removal of the substructure and foundation elements after the end of the operational life.

Bucket foundations are composed of a closed steel cylinder reminiscent of a bucket, hence the name. The cylinder is lowered to the seabed by crane and then pumped empty. This creates a negative pressure in the cylinder and the hydrostatic pressure acting upon it from above drives the foundation into the sediment.

For offshore jackets, buckets have commonly a diameter of 6 to 9 meters. In their tests, the IWES scientists used a bucket with a diameter of 1.4 meters designed for a jacket support structure.The exceptional test set-up ensured homogeneous and realistic test conditions. The TTH’s foundations test pit is 14 meters long, nine meters wide, ten meters deep and was filled for the tests with sandy sediment, typical of the North Sea.

“The suction bucket foundation displays a great deal of potential for an even more reliable and cost-effective deployment in the North Sea. However, the installation requires considerable expertise and validated prediction models,” said Tulio Quiroz.

In order to drive forward research in this field, Fraunhofer IWES plans to assemble a research cluster comprising industry partners, research institutions and approval authorities.

References

[1]

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Press release - Suction Buckets: Large-Scale Test Reveals Increased Tensile Capacity During Storms. URL: https://www.iwes.fraunhofer.de/en/press---media/suction-buckets--large-scale-tes.... [Date Accessed: 17/04/2018].

Technology

19 Jul | ScottishPower Renewables to trial new Aveillant radar solution to ‘unlock’ the future of offshore wind

ScottishPower Renewables has partnered with Cambridge-based Aveillant, part of the Thales Group, to test a pioneering new radar system that aims to safeguard the UK’s world-leading offshore wind industry.

Technology

17 Jul | Non-invasive industrial sensors reduce downtime and increase efficiency for the renewables sector

OneWatt, an industrial technology developer backed-by InnoEnergy, Europe’s sustainable energy innovation engine, has launched a unique motor monitoring system for the onshore and offshore wind, hydro-power and industrial sectors.

Technology

05 Jul | Ahlstrom-Munksjö launches HighFlow Wind Energy, its latest reinforcement fabric for wind turbine blade manufacturing

”We are very pleased to introduce Ahlstrom-Munksjö HighFlow to the wind energy industry today” states Pekka Helynranta, VP Building and Wind.

Technology

05 Jul | TÜV SÜD supports innovative project for offshore foundation

Acting on behalf of Spanish civil engineering and consulting firm ESTEYCO, TÜV SÜD is supporting the design and development of an innovative foundation for offshore wind-energy turbines in the ELISA and ELICAN projects funded by the European Union. A pilot turbine was installed off the eastern coast of Gran Canaria in June 2018. TÜV SÜD experts have accompanied the project from design examination to pilot-turbine Installation.

22 Jun | “Offshore Wind Energy Index 2017” for the German Bight Published

Fraunhofer IWES has now extended its index for the German Bight for the year 2017. The index provides information on how high the maximum available natural energy yield was compared to previous years. This evaluation helps operators to quantify performance losses and to identify and resolve the causes. Overall, the final index for the past year was between -2.0 and +0.9 percent compared with the years 2007-2016.

Technology

07 Jun | Ground broken for New Test Stand for Generator/Converter Systems

Work recently got under way on the Institute’s latest construction project with digging a whole for the heavy-duty foundations of a 250 m2 hall in the direct vicinity of IWES´s nacelle test stand DyNaLab.

Technology

29 May | EcoSwing Superconducting Generator Proves Itself on the Test Bench

Compact design, low tower head mass, and good transportability: The generator developed in the EcoSwing research project, is to be used in the next generation of multi-megawatt turbines.

Policy & Markets

06 Apr | BSH Commissions IWES to Conduct Preliminary Assessment of Seabed

In accordance with the German Offshore Wind Energy Act (WindSeeG), preliminary assessment of soil conditions must be performed before contracts can be awarded for new offshore wind farm clusters in the North and Baltic Sea.